Automatically Identifying and Fixing Single Channel
Audio Defects in Stereo Audio

Koen Putman

January 23, 2018

Abstract

We attempted to automatically detect and filter audio defects in days
worth of stereo recordings. These defects include noise, distortions, broken
channels, channel imbalance, and clipping. We will describe how we detect
these issues and how we attempt to filter them. We implemented software
that could run in real time and attempts to deal with these issues with
varying degrees of effectiveness. While this work can serve as a nice base
to improve, it is far from production ready and we spend a lot of time
describing possible improvements.

1 Introduction

Imagine having days worth of stereo recordings that all suffer from issues like
noise, but mostly in one channel at a time. You can go through and manually
try to get rid of it, but what if you could automate the detection and fixing of
these problems. For this project we will try and implement some software that
will automatically fix audio defects without supervision while not needlessly af-
fecting audio without issues.

We realise this is not a common problem and do not expect anyone else to find
much use for this, but we will take you along for the ride of trying to wrap our
heads around this problem and a solution. Our test samples are based on days
upon days of recordings from an internet livestream of a club, so they are one
large collection of copyrighted content and can not be shared. Given that our
approaches were mostly determined by experimenting on problematic samples
from this dataset the presented methods are not guaranteed to be effective on
anything else, let alone the dataset itself. As this is a very specific problem there
is not much in terms of literature on this subject available, so we will mostly be
describing our own findings.

We will start with a short introduction of the audio defects in Section 2, followed
by our ways of detecting and filtering them in Section 3. We actually imple-
mented these so in Section 4 we describe our implementation and the issues we
faced while implementing. Our experimental results and shortcomings of the
filters will de described in Section 5 and we end on a conclusion and a short list
of possible improvements in Section 6.



2 Audio problems

This section shortly describes some of the issues we want to deal with. Given
that describing audio in text is not our strong suit it will be somewhat vague.
The project website will have some samples to make the issues clear.

Noise

While the recordings have some overall noise, there were several instances of very
apparent white noise in a single channel while the other channel was fine. This
was probably introduced by the mixer or something in the connection between
the audio source and the streaming PC. While it is not very audible when
the music is loud, it is definitely annoying when the amplitudes are lower. Even
when it is virtually inaudible due to the relatively low amplitude, it is noticeable
when you suddenly stop playing any music and take off your headset. Your brain
will probably be generating similar noise in your other ear to compensate.

Broken channel

Broken audio in this case refers to one channel suddenly cutting out or becoming
heavily distorted. This happens sometimes due to glitches in the streaming setup
or the turntables. This is generally fixed by duplicating the channel without
issues, but given that it only happens sometimes it is very annoying to locate
and deal with.

Unbalanced audio

This is a more common problem and happens on virtually every recording,
though usually not to a very noticeable degree. It is very annoying to listen to
when the difference gets bigger though.

Clipping

When the channels are unbalanced issues like clipping can pop up. If the am-
plitude reaches the maximum some information is lost. This can give problems
after normalisation where the channel with clipping will be missing something
even if the general levels are comparable.

3 Detection and filtering

Here we will attempt to describe the way we dealt with the various issues we
mentioned. These methods have changed a lot and are not even effective in many
cases, but they should serve as a starting point for how to filter for these issues.
Our approach uses Hann windows with 50% overlap and we obtain the frequency
spectrum using a Fast Fourier Transform (FFT). We use a real optimised version
of the FFT so we get framesize/2 + 1 bins from our transform.



3.1 General metrics

Given that we need some way of detecting these issues, we need some numbers.
We generally keep a fixed size history of data for previous frames to base our
filtering on. For the time domain we keep an average absolute amplitude and
peak amplitude. For the frequency domain we keep a history of the absolute
values for every bin, as well as peaks and average level over all frequency bins.
These values are then used to determine if we want to filter and how much.

3.2 Noise

This was the first thing we attempted to deal with, but also turned out to be
the hardest to deal with overall. The current approach is based on the average
level for that frequency per channel over the entire history as well as a threshold
for if the current bin needs to be altered.

Our way of detecting this is very flawed, but it is very difficult to effectively
filter noise without some form of profile. Our method involves looking at the
difference in level for this bin. This is, of course, not the best way to deal
with this, but it is a fast way. The way we decided to tackle the noise problem
is by applying some negative gain in the frequency spectrum to all channels
below a certain level and smoothing these gains to reduce the side effects on
neighbouring channels.

The main approach is to compute the average difference between the bins in
the entire history in dB. If this is bigger than 1 dB we will reduce the level
of the louder channel by this amount. We also use the difference to determine
how much we reduce the level of this channel if we detect that it is below the
threshold we set. Currently we choose -9dB as a reduction amount and make it
vary between -0dB and -18dB based on the average energy difference between
the channels. This is added to the gain reduction. Once all bins have been
checked we smooth the gains. This is done by taking their natural logarithm
and averaging the closest 3 in both directions and the current one. Once this is
done we get the actual gain multiplier back by raising e to our smoothed power.
The reason we use a logarithm here is because of the way audio works and how
we perceive it. Both channels are then multiplied by these gains.

This method will suppress more than just the noise so it is certainly flawed. It
will also let some noise through when it is heavy. These things are hard to avoid
though when you are generating some form of noise profile on the fly without
any knowledge.

3.3 Broken channel

The interesting part of dealing with this is the detection, as the filter basically
just copies either the time or frequency data for the normal channel. We use
detection in both the time domain and frequency domain. The time domain
detection is based on the amount of difference between the average amplitude
of the channels and the amount of times the signal is zero. For the frequency



domain it is based on the average frequency.

The currently defined ratios are one channel’s average being three times as high
as the other on average in either frequency or time, or the amount of times the
signal is zero being twice as big as the other channel. These tend to detect a lot
of the broken audio, but are not as effective on smaller distortions. Not every
consecutive frame is going to pass these thresholds when during the periods
with broken audio and not every frame that passes them is actually broken.
We employ some counters for our approach with a maximum level. and a set
increment and decrement. The current maximum is 512 and every broken frame
increases the count by 16, while a normal frame reduces it by 1. If it reaches over
a certain threshold, 32 in this case, it will start replacing a broken channel. This
channel is not necessarily the right one to replace though, because broken audio
shows up in several forms. So we keep a threshold for changing the channel we
replace as well. For every bad frame that is the same as a previous one the
counter is decreased to a low point of -20. If the broken frame is different than
the last we increase the counter. If the counter reaches 3 the channel switches
and it is reset to 0. This way larger stretches of broken audio will still replace
the correct channel.

As we mentioned before this method is not always effective at detecting distor-
tions, and even if it does they have to happen very often in short succession
to reach the threshold. The switch from stereo to mono and back is also a bit
obvious, but it is not as bad as the broken audio is.

3.4 Normalisation

We thought of multiple approaches, but the first one we tried seemed to work
rather well, so we stuck with it. We normalise in the time domain based on the
difference in average amplitude, but only when it is within reasonable bounds.
This seems to take care of most of the issues. The other approach would be
to do it based on the energy in the frequency spectrum, which would actually
help with some of our spectrum based filters, but not with others. We have two
moments at which we can normalise, one is before the FFT and one is after the
iFFT and just before writing to a file. These are generally good enough to take
care of a normal channel imbalance.

3.5 Clipping

Detecting clipping is pretty easy, but trying to regain peaks is not a trivial
task and something that I could not figure out within the scope of this project.
Detecting clipping is basically just testing if the signal reaches full amplitude.
My ideas for filtering were mainly based on the levels in the frequency spectrum
and multiplying some of the higher levels of the normalised signal to try and
regain some of the lost peaks in frequencies. This approach is flawed and does
not work well in its current state, but there is probably a decent way to improve
it.



4 Implementation

In order to get this implemented efficiently so that it could be run in a real-time
setting we implemented it in C. The main reasoning for this is that it could also
be used on streams as they are running so the problems do not have to be fixed
afterwards. This is also the reason why the proposed filters are all based on the
current frame and do not modify older frames based on new information. This
does result in some issues getting through, but it will run with a very minimal
delay of around 1 frame length. Given that we chose 1024 samples/frame and
run on 44.1 kHz signals we are talking about under 25ms delay here. It’s pos-
sible to reduce the frame size even further, but that reduces the frequency bin
count so it comes with some trade-offs. We currently keep 512 frames of histo-
rical data, so all the filtering is based on the past approximately 10 seconds.
For audio file reading we used libsndfile, which will not work for our final goal
of running in real-time on running streams since it has some issues with the way
audio is read/written from pipes, but we did not have time to implement our
own replacement. So for now we can only run on existing audio files.

For the FFT we use Kiss FFT a simple drop-in FFT with a real-optimised va-
riation that is reasonably fast and easy to integrate. This could of course be
improved, but it is not the limiting factor.

The implementation is fast enough to run faster that real-time even before
real optimisations, so that will not be an issue. The implementation is kind
of library-like, where the main function just calls several library functions in
succession, but the structure is not entirely done yet.

There is a set order for filters in every iteration, which goes through all the steps
for a frame made up of old an new samples in a 1:1 ratio. It starts by reading
the samples from the input file and places them in the second half of the frame
while the first half is the samples from the previous frame. It detects clipping
and applies the window. After this we analyse the time domain and generate
some statistics. If the option to fix broken channels is enabled this is where the
time domain analysis would happen, so the channel will be replaced right off
the bat. After this the signal will be normalised if we so desire. This takes care
of the first time domain step, so we can FFT and obtain the spectrum. Right
after the transform we generate statistics about the current spectrum. Then we
detect and replace broken channels again, but based on the frequency spectrum.
If there was clipping and the option was enabled this is when the clipping fix
would be attempted. Finally before transforming back the de-noising happens.
After the transform back we generate more statistics and apply the post nor-
malisation if required. Then the final step is adding the old samples from this
frame to the ones from the previous frame and write them to the output file.
The newer samples are stored in a buffer for the next loop iteration so they can
be added together to deal with the Hann window.

This order is not perfect. De-noising becomes a lot harder after you normali-
sed in the time domain, so especially for that case we could probably do some
frequency based normalisation instead, or transform multiple times to avoid
influencing the metrics, but that comes with a performance penalty and impli-



cations for the metrics when a signal does not have noise but did have to be
normalised. Working these out is still an ongoing problem and will require more
experimentation and consideration. Our implementation also made it more dif-
ficult to do mono tricks when replacing the channel, like delaying one channel
for a while. Given our very fixed amount of data that needed to be written it
was kind of difficult to balance everything. We kept all the statistics private
to the filters, so you can not access them normally outside of that. The main
reason for this was to statically allocate everything and keep the constants in
one place. Just like there is only a single call to malloc in the entire code be-
cause all the buffers are placed in a single contiguous memory space. In the
current version of the code it is not even in an active codepath because we also
allocate the large buffer statically. One of the initial ideas was that it would
be nice if it could run on some small computer like a Raspberry Pi, but getting
it fast enough to run all filters in real-time on that might require some extra
optimisations.

5 Results and shortcomings

Results are subjective and far from perfect, but for the most part normalising is
actually really effective. On all the heavily imbalanced samples it manages to get
a decent balance back, but louder channel is still a bit lower after normalisation.
This can probably be dealt with using some better balance of normalisation or
normalising based on the frequency spectrum. Clipping fix is not really helping
at this point it time, so we will not discuss that further. Fixing broken channels
by replacing them is fairly effective, but suffers from the fact that it is always
a few frames late and has some issues with falling below the threshold when
the audio sounds decent for a while. It does work really well when one channel
is properly broken though. One of the main problems is that the metrics used
to detect it are very imperfect and sometimes classify normal audio as broken
leading to channel replacements when not appropriate, like when one channel
is intentionally left silent in some music as an effect. De-noising has become
our worst enemy. It can be really effective, but also has an effect on all of the
other audio. Sure the final results are decent in some cases and it can work
pretty all right, but it is far from the easy to fix problem we expected it to be.
The main reason for this is probably how we generate a makeshift noise profile
from channel differences and then apply it to both channels to varying degrees
in order to keep both of them noise free.

The biggest issue is that, while some filters like normalisation and clipping fix
are fine to run on properly balanced audio without causing many distortions,
the other filters tend to mess with the audio a lot more. So running these
without noticeable side effects is probably never going to be possible. It should
be possible to dynamically allow changing the filter configuration when running
in real-time and suggest filters to the user though. Some examples of decently
filtered audio will be on the project site.



6 Conclusion

We set out to create automatic detection and filtering software and we managed
to create a decent base implementation, but getting actual good results will re-
quire more time spent on experimentation and research. Some of the results are
very promising though, so they make it seem like a working solution for these
problems is more than a pipe-dream.

As improvements to the implementation itself we would like to implement some
form of lookahead to be able to catch some issues and correct them before
writing to the output instead of only basing everything on the history. Other
than the history there is also the issue with not being able to run with piped
input/output with this implementation and the audio library it uses. A simple
PCM in wav read/write replacement should not be too much work and will make
it possible to chain this between a livestream and output application/encoder.
Currently basically all configuration in terms of parameters is compile time be-
cause it is efficient at runtime, but we would like to expose some of these to
runtime configuration so it can be easier to experiment.

In terms of the filters themselves we would want to experiment more with the
order and maybe add more steps. There are also a lot of potential optimisations
possible with SIMD for instance. In terms of filters we would like to improve
all of them of course. It is a work in progress so there is always room for im-
provement. The main short term goals per filter would be interesting to list
though.

De-noising will need some major logic changes to stop ruining proper audio.
There have been previous instances during this project that were less destructive,
but also worse at removing the noise. Getting average levels from several neig-
hbouring bands instead of just the one would probably also get a bigger impro-
vement, though it would incur an even bigger performance penalty.

Fixing broken channels would need some additional detection methods and pa-
rameter tweaking. It is not good enough at detecting slight distortions that still
ruin the listening experience. It could also stand to be more aggressive in repla-
cing consecutive frames since it does tend to switch back to stereo after short
periods of not very broken audio. There is also the possibility of faking stereo
effect on the audio by delaying it a bit. We already experimented with inverting
the amplitudes for the other channel which had some effect, but that was not
more pleasant to listen to. This filter in general is able to run on most clean
audio without causing problems, but the occasional misstep where it replaces
proper stereo with mono for very little reason can be annoying.

Normalisation will require some tweaking and maybe some work in the frequency
domain so that it can be used in combination with other filters more easily and
perhaps get some better results on some samples. Clipping fix will require a lot
more work. One of the ideas to fix clipping is to try and recreate the shape of
the non-clipping channel in the one that did, but that is probably going to be
hard to balance.



